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Along the lines of the restricted Euler equation (REE) for incompressible flows, we
develop homogenized Euler equation (HEE) for describing turbulent velocity gradient
dynamics of an isentropic compressible calorically perfect gas. Starting from energy
and state equations, an evolution equation for pressure Hessian is derived invoking
uniform (homogeneous) velocity gradient assumption. Behaviour of principal strain
rates, vorticity vector alignment and invariants of the normalized velocity gradient
tensor is investigated conditioned on dilatation level. The HEE results agree very well
with the known behaviour in the incompressible limit. Indeed, at zero dilatation HEE
reproduces the incompressible anisotropic pressure Hessian behaviour very closely.
When compared against compressible direct numerical simulation results, the HEE
accurately captures the strain rate behaviour at different dilatation levels. The model
also recovers the fixed point behaviour of pressure-released (high-Mach-number limit)
Burgers turbulence.

1. Introduction
Examination of velocity gradient dynamics is crucial to understanding important

turbulence phenomena such as energy cascade, scalar mixing, material element
deformation and intermittency. The magnitude and sign of the principal strain rates
reveal the nature of self-straining of a fluid element. Orientation of the vorticity
vector with respect to the eigendirections of the strain rate tensor and the pressure
Hessian tensor influences energy cascade rate (Ohkitani 1993). Alignment of vorticity
with the eigenvector along a positive strain rate corresponds to vortex stretching
whereas orientation with the eigenvector of a negative principal strain rate represents
vortex compression. Scalar gradients are steepened leading to enhanced mixing, when
aligned along a negative principal strain rate. The phenomenon of intermittency is
directly related to the localized magnification of velocity gradients (Li & Meneveau
2005). The topology of the local velocity field near a critical point can be visualized
with knowledge of the invariants of velocity gradient tensor (Perry & Chong 1987;
Chong, Perry & Cantwell 1990). It is desirable to develop a simple dynamical model
to capture the essential features of velocity gradient physics in turbulent flows. Such a
model can also serve as the basis of stochastic turbulence closures (Girimaji & Pope
1990).

Velocity gradient evolution is dictated principally by nonlinear processes. Linear
analytical theories of turbulence – like the rapid distortion theory (RDT) – are
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thus not applicable. Based on the Euler equation, an autonomous system of
ordinary differential equations – called the restricted Euler equation (REE) – was
proposed by Vieillefosse (1982) to describe the nonlinear velocity gradient dynamics in
incompressible flows. Ashurst et al. (1987) demonstrated that REE accurately captures
many important features of velocity gradient geometry including the alignment
of vorticity with strain rate eigenvectors. Subsequently, several modifications have
been proposed to enhance the REE. Cantwell (1992) presented invariant maps of
velocity gradient tensor to develop more insight into the tensor geometry. Cantwell
(1993) also proposed an anisotropic pressure Hessian closure that captures some
additional features of the invariants seen in direct numerical simulation (DNS)
results. Girimaji & Speziale (1995) identified a limitation in the original REE in the
context of non-zero mean flows and proposed modified REE to ensure momentum
conservation. Also a computational strategy to circumvent the problem of finite-
time singularity was developed. Chertkov, Pumir & Shraiman (1999) proposed an
improvement to REE based on Lagrangian tetrad dynamics. Jeong & Girimaji (2003)
incorporated further physics into the REE to take into account the viscous effects
and consequently removing the finite-time singularity problem altogether. Recently,
Li & Meneveau (2005) have used the restricted Euler dynamics to propose a simple
nonlinear dynamical model to explain the origins of intermittency in turbulent flows.
Chevillard & Meneveau (2006) have also suggested modifications to capture the
effects of the neglected viscous and anisotropic pressure Hessian terms. Overall, REE
is emerging as an important analytical tool – a nonlinear counterpart of RDT – for
studying various turbulence mechanisms. REE and RDT address different aspects of
turbulence dynamics and, hence, are mutually exclusive in terms of physics content.

The interaction of pressure with velocity field plays an important role in velocity
gradient dynamics. In incompressible flows the pressure field depends exclusively
upon velocity field via the Poisson equation. The restricted Euler model takes
advantage of this fact and closes the pressure Hessian in terms of the velocity
gradient itself by completely neglecting the anisotropic portion of the tensor. In
compressible flows the pressure field evolution is dictated by state and energy
equations. Variations in temperature and density manifest on the turbulent velocity
field via pressure effects. The momentum and energy equations become coupled,
and thermodynamics can significantly influence the velocity field. A velocity gradient
model for compressible flow field must necessarily take into account this coupling
between turbulence and thermodynamics. The REE approximation, which hinges
on Poisson equation, is fundamentally unsuited for extension to compressible
flows.

Our principal objective is to develop a velocity gradient model for turbulent
compressible flows along the lines of the incompressible REE model. We derive
such a model from energy and state equations by invoking uniform velocity
gradient assumption (Vieillefosse 1982). Then, we seek to establish the validity of
the model by comparing: (i) the asymptotic behaviour against fixed points of Burgers
turbulence (Bikkani & Girimaji 2007); (ii) the incompressible-limit behaviour against
incompressible DNS results (Ashurst et al. 1987; Soria et al. 1994) and (iii) strain rate
statistics at intermediate dilatations against compressible DNS results (Lee 2008). We
also make comparisons with the asymptotic REE results to highlight the improvements
achieved in the incompressible limit.

We develop the model – homogenized Euler equation (HEE) – in § 2. Section 3
contains a discussion of the numerical method and establishes the various velocity
gradient statistics of interest. In § 4 we present the model results and evaluate the
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performance of the model against known turbulence behaviour. Section 5 concludes
the paper with a summary.

2. Homogenized Euler equation
In this section we develop the homogenized Euler equation and highlight the

involved assumptions. For an inviscid calorically perfect gas without any heat source,
the conservation of mass, momentum and energy equations are

∂ρ

∂t
+

∂(ρVk)

∂xk

= 0, (2.1)

∂Vi

∂t
+ Vk

∂Vi

∂xk

= − 1

ρ

∂p

∂xi

, (2.2)

∂T

∂t
+ Vk

∂T

∂xk

= −T (n − 1)
∂Vi

∂xi

, (2.3)

where n is the ratio of specific heats; Vi , p, ρ and T represent velocity, pressure,
density and temperature, respectively. For a perfect gas the three thermodynamic
variables are related through the following state equation:

p = ρRT . (2.4)

Any attempt to formulate a velocity gradient model for a general perfect gas flow
field would lead to a very high degree of complexity. As a first step we restrict our
consideration to a flow field which has a uniform entropy distribution. With this
assumption the state equation (2.4) simplifies to the following form:

p = Cρn, (2.5)

where C is constant both in time and space. This assumption significantly simplifies
the formulation and yet captures the influence of a thermodynamically evolving
pressure field on velocity gradient dynamics. In later works we will ease the uniform
entropy assumption to develop models for more complex flows. Nonetheless, we will
compare the model performance against decaying non-isentropic turbulence data to
investigate the practical utility of the new model. We will also compare the model
against Burgers turbulence which represents an extreme limit of compressible flow.

2.1. Equation for the velocity gradients

We now derive the evolution equation for the primary quantity of interest, the velocity
gradient tensor Aij

Aij ≡ ∂Vi

∂xj

. (2.6)

Equation (2.2) is re-written using (2.5) as

∂Vi

∂t
+ Vk

∂Vi

∂xk

= − 1

ρ

∂(Cρn)

∂xi

. (2.7)

Taking gradient of this equation leads to an equation for Aij :

dAij

dt
= −AikAkj − ∂

∂xj

(
1

ρ

∂(Cρn)

∂xi

)
, (2.8)
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where d/dt indicates material derivative. Now, with C and n being constants the
pressure Hessian ∂((1/ρ)(∂(Cρn)/∂xi))/∂xj , simplifies to a symmetric form

dAij

dt
= −AikAkj − Cn

n − 1

∂2g

∂xi∂xj

, (2.9)

where g ≡ ρn−1. Closure equation for this symmetric pressure Hessian is next obtained
from the mass conservation Equation (2.1):

d

dt

(
∂g

∂xi

)
= −Aki

∂g

∂xk

− (n − 1)Akk

∂g

∂xi

− (n − 1)g
∂Akk

∂xi

, (2.10)

d

dt

(
∂2g

∂xi∂xj

)
= −Akj

∂2g

∂xi∂xk

− Aki

∂2g

∂xk∂xj

− ∂Aki

∂xj

∂g

∂xk

− (n − 1)Akk

∂2g

∂xi∂xj

− (n − 1)
∂Akk

∂xi

∂g

∂xj

− (n − 1)
∂Akk

∂xj

∂g

∂xi

− (n − 1)
∂2Akk

∂xi∂xj

g. (2.11)

2.2. Central assumption of HEE

As discussed in § 1, it is our objective to construct a simple autonomous dynamical
system of equations which can capture the essential features of nonlinear velocity
gradient dynamics in compressible turbulence. The success of REE for incompressible
flows clearly demonstrates that much insight can be obtained in homogeneous systems
wherein the velocity gradients are constant in space (Vieillefosse 1982):

∂Aij

∂xk

≡ 0. (2.12)

This is the central assumption of our model. Subject to this assumption (2.9) and
(2.11) simplify substantially to

dAij

dt
= −AikAkj − Pij , (2.13)

dPij

dt
= −PikAkj − PkjAki − (n − 1) PijAkk, (2.14)

where

Pij ≡ Cn

n − 1

∂2g

∂xi∂xj

(2.15)

is the pressure Hessian tensor. Equations (2.13) and (2.14) form a closed set
of 15 ordinary differential equations in 15 unknowns. We refer to this equation
set as the HEE model. It is important here to point out major differences
between the HEE and REE formulations. The original REE invokes a more
serious assumption in which the pressure Hessian is simplified to only its isotropic
component:

∂

∂xj

(
1

ρ

∂p

∂xi

)
=

1

ρ

∂2p

∂xi∂xj

= −AmnAnm

3
δij . (2.16)

This assumption is invoked for the mathematical benefit of yielding a closed set of
equations. It must be pointed out that the term ‘homogenized’ in HEE does not
indicate any homogenization procedure. Here, homogeneous refers to the fact that
the velocity gradients are (nearly) invariant in space. Homogenization procedure on
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the other hand refers to the mathematical limit of setting the heterogeneity scale to
infinity, thus rendering the problem homogeneous.

Some attempts have been made in literature to include anisotropic contributions
(Cantwell 1993; Chevillard & Meneveau 2006) in REE. These involve other
assumptions which have their own limitations. The HEE, on the other hand, does
not require any further assumptions regarding the pressure Hessian. The full Hessian
in its natural form is included in the model. This is possible due to the invocation of
state and energy equations, which are not used in the REE.

2.3. Velocity gradient dynamics in Burgers turbulence

In the context of nonlinear turbulence processes, it is relevant to mention the
significance of Burgers equation. Burgers turbulence represents the extreme state
of compressible turbulence in which pressure effects are negligible in comparison with
the inertial effects. For this reason Burgers turbulence is also called the pressure-
released turbulence. Burgers turbulence is known (Passot & Vzquez-Semadeni 1998)
to provide a reasonably accurate representation of very high-Mach-number Navier–
Stokes turbulence in (i) high-density flows with polytropic index less than unity and
(ii) low-density flows with polytropic index larger than unity. Due to its simplicity,
Burgers equation is often used as a test bed to evaluate new turbulence theories
(Avellaneda, Ryan & Weinan 1995; Bouchaud & Mzard 1996). Burgers turbulence also
captures some important aspects of the energy cascade mechanism and intermittency
seen in Navier–Stokes turbulence. Girimaji & Zhou (1995) demonstrate that the
spectral energy transfer and the triadic interactions displayed by Burgers equation
are similar to that in Navier–Stokes turbulence. Recently, Bikkani & Girimaji
(2007) investigated the dynamics of three-dimensional Burgers equation to probe
the role of pressure in incompressible flows. One key result of Bikkani & Girimaji
(2007) is that Burgers-turbulence velocity gradients exhibit two stable fixed point
families given by

(α, β, γ, ωα, ωβ, ωγ ) =
(
ϕ, 0, ϕ − 1, 0, ±2

√
ϕ − ϕ2, 0

)
, (2.17)

(α, β, γ, ωα, ωβ, ωγ ) =
(

1√
3
, 1√

3
, 1√

3
, 0, 0, 0

)
, (2.18)

where ωα , ωβ and ωγ are the components of vorticity along the eigenvectors
corresponding to the strain rates eigenvalues α, β and γ . The term ϕ is a free
parameter which depends on initial conditions only. It is reasonable to conclude that
these fixed points represent the turbulent velocity gradient behaviour in the limit of
very large Mach number.

3. HEE normalization and conditional statistics
Inviscid incompressible velocity gradient dynamics exhibit finite-time singularity

(Cantwell 1992; Girimaji & Speziale 1995) rendering numerical computations difficult.
In this section, we first present the normalized version of HEE which circumvents
the finite-time singularity problem by rescaling time. Then we proceed to describe
the manner in which statistics are gathered and present the rationale for conditional
averaging based on dilatational level.

3.1. Normalization and rescaling

We define the normalized velocity gradient tensor as

aij ≡ Aij

ε
ε ≡

√
AmnAmn. (3.1a, b)
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The quantity aij contains all the geometrical information about the velocity gradient
tensor and has the advantage of being bounded (−1 � aij � 1). The substitution of
aij in (2.13), however, results in the appearance of ε, which itself can diverge in finite
time. To eliminate ε from the equations the evolution is considered in rescaled time
t ′, such that dt ′ ≡ dt/τ , where τ ≡ 1/ε. With these change of variables, (2.13) and
(2.14) take the following form:

daij

dt ′ = aijamnaknamk + τ 2aijamnPmn − aikakj − τ 2Pij , (3.2)

dτ

dt ′ = τamnaknamk + τ 3amnPmn, (3.3)

dPij

dt ′ = −Pikakj − Pkjaki − (n − 1)Pijakk. (3.4)

This set has the same number of equations as that of the unnormalized form.
The equations are computationally well behaved even if the unnormalized velocity
gradients diverge in finite time. The normalized equations (3.2)–(3.4) are now employed
to examine velocity gradient geometry. As in Girimaji & Speziale (1995), time
integration of (3.2)–(3.4) is performed using fourth-order Runge–Kutta scheme with a
specified set of initial conditions for each realization or particle. A particle is ‘created’
by assigning randomly generated values for initial Aij . A random number generator
that produces uniformly distributed numbers between −1 and 1 is employed for the
purpose. Initial τ is set to unity for all particles. The initial Pij is chosen as in the
REE model

Pij (t=0) = −AmnAnm

3
δij . (3.5)

Starting from this initial condition, Pij then evolves according to (3.4).

3.2. On the nature of HEE

The HEE, REE and Burgers velocity gradient models are all autonomous dynamical
equation sets with one or more stable fixed point families. The evolution and
asymptotic behaviour of the REE velocity gradients are described in detail in Cantwell
(1992). The incompressibility constraint makes REE transient behaviour analytically
tractable. The transient behaviour of Burgers and the HEE model do not appear to
be as easily amenable to analytical examination. As mentioned earlier, the asymptotic
behaviour of Burgers velocity gradient dynamics is given in Bikkani & Girimaji
(2007). Our computations show (more on this in next section) that HEE, like Burgers,
yields two distinct velocity gradient stable fixed points. Starting from specified initial
conditions, a typical solution trajectory evolves rapidly with non-monotonic changes
in dilatation and approaches one of the two fixed points in long times. While
the asymptotic geometry of the velocity gradient tensor is important, the transient
dynamics also yields crucial insight into turbulence processes. We characterize the
transient dynamics conditioned upon the current value of normalized dilatation.
Normalized dilatation quantifies the degree of compression of a fluid element, as it
represents the rate of change of density. Velocity gradient statistics conditioned on
dilatation provides a basis for comparison of HEE against DNS data.

To minimize the influence of initial conditions, statistics are gathered after an initial
time lapse T

T =
1

(τamnaknamk + τ 3amnPmn)t ′=0

. (3.6)

From (3.6) T can be seen as one velocity gradient turn-over time.
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3.3. Conditional statistics

We perform HEE calculations with an ensemble of fluid particles in order to obtain
statistics of various quantities of interest. The normalized velocity gradient tensor
(aij ) is separated into its symmetric and anti-symmetric parts: the strain rate tensor
(sij ) and the rotation rate tensor (wij ). The symbols α, β and γ are assigned to
the three eigenvalues of sij such that α � β � γ . The sum of these eigenvalues is
the dilatation (aii) or the measure of the rate of change in element volume. In
compressible flows the normalized dilatation aii can vary within the algebraic limits
of −

√
3 to

√
3. Expanding fluid elements are characterized by positive dilatation

values whereas contracting ones by negative dilatation values. Ratios between the
strain rate eigenvalues help in visualizing the change in shape of the fluid element.
Each of the eigenvalues is normalized as follows:

α∗ =
α√

α2 + β2 + γ 2
β∗ =

β√
α2 + β2 + γ 2

γ ∗ =
γ√

α2 + β2 + γ 2
. (3.7a, b, c)

Another point of interest is the orientation of the vorticity vector, ω. This is examined
in terms of the cosine of the angles that the vorticity vector makes with the eigenvectors
of (i) the strain rate tensor and (ii) the pressure Hessian tensor Pij . Eigenvalues of
the pressure Hessian tensor are represented by the symbols αp , βp and γp such that
|αp| � |βp| � |γp| (Ohkitani & Kishiba 1995). We also examine the three invariants
of the normalized velocity gradient tensor aij . The definitions of these invariants are
(Chong et al. 1990)

p ≡ −aii , (3.8a)

q ≡ 1
2
(p2 − sijsji − wijwji), (3.8b)

r ≡ 1
3
(−p3 + 3pq − sijsjkski − 3wijwjkski). (3.8c)

4. Results and discussion
In this section we compare the performance of the HEE model against some

established analytical and numerical results. We first examine the asymptotic states
of the HEE equation and discuss their relation to the stable fixed points of Burgers
velocity gradient dynamics. Next we compare the performance of the HEE in the
incompressible limit against incompressible turbulence DNS. Here we also make
comparisons with REE results. Finally we compare HEE against compressible DNS
results at various intermediate levels of dilatation.

4.1. Asymptotic behaviour of HEE

As mentioned earlier, the numerical integration of the HEE equations reveal two
asymptotic states for the normalized velocity gradient tensor. The normalized
dilatations of the two fixed points are approximately 1.7 and −1. All particles going
to the fixed point with the normalized dilatation value of 1.7 have a vorticity-free
three-dimensional isotropic expansion-wave structure

(α, β, γ, ωα, ωβ, ωγ ) ≈
(

1√
3
, 1√

3
, 1√

3
, 0, 0, 0

)
.

For all the particles in this asymptotic state we observe that the inertial term is much
larger than the pressure term ‖AikAkj ‖ 	 ‖Pij ‖ referring to (2.13). Clearly, this is a
pressure-released limit of the HEE. It is then reasonable to compare this solution to
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the pressure-released Navier–Stokes (Burgers turbulence) fixed point behaviour given
in (2.17) and (2.18). This HEE pressure-released fixed point is identical to (2.18).

All particles reaching the other asymptotic state (aii = −1) have one-dimensional
compression wave-like structure with negligible vorticity

(α, β, γ, ωα, ωβ, ωγ ) ≈ (0, 0, −1, 0, 0, 0).

This solution happens to be a special case of the first fixed point (2.17) of Burgers
dynamics with parameter ϕ = 0. Despite this agreement we do not classify this HEE
asymptotic state as a pressure-released behaviour. Our computations show that in
this asymptotic state the inertia terms are not convincingly large enough as compared
to the pressure terms (‖AikAkj ‖ ≈ 5 ‖Pij ‖).

Overall, it can be concluded that in the pressure-released or high-Mach-number
limit the HEE reproduces asymptotic Burgers turbulence behviour.

4.2. HEE in incompressible limit

Now we will examine HEE for the other limiting case, incompressible turbulence. The
HEE results conditioned upon zero dilatation can be interpreted as the incompressible-
limit behaviour of the HEE model. We compare this behaviour against DNS results
of incompressible decaying isotropic turbulence (Kerimo & Girimaji 2007). We
also include the asymptotic REE results in this discussion to highlight the relative
improvements achieved with the HEE model in predicting incompressible turbulence
behaviour.

Alignment of vorticity vector with respect to the eigenvectors of the strain rate
tensor is of much physical significance as it quantifies the extent of vortex stretching
in turbulent flows. The information about the sign and magnitude of strain-rate
eigenvalues helps us understand cascading due to self straining. In figures 1 and 2 we
present probability density functions of the normalized strain rate eigenvalues (α∗, β∗,
γ ∗) and the cosine of the angles vorticity makes with the corresponding eigenvectors.
While the probability density functions completely describe the distributions of the
quantities of interest, the peaks can be interpreted as the most probable values. The
success of asymptotic REE has been limited to qualitatively predicting the following
two most probable features of incompressible turbulence: (i) the intermediate
eigenvalue is small but positive and (ii) vorticity aligns best with the eigenvector
corresponding to the intermediate eigenvalue. The REE probability density functions
do not recover the broad distributions seen in DNS. The HEE model, on the other
hand, not only reproduces the most probable values seen in DNS but recovers the
entire range of distributions in figures 1 and 2.

Next, we compare joint distribution of the second and third invariants of aij

(3.8). The associated topology of the velocity gradient tensor can be inferred with
knowledge of the coordinates (q, r) on the p = 0 plane for incompressible flows
(Chong et al. 1990). Chen et al. (1990) and Soria et al. (1994) investigate the dominant
local topologies at the dissipating scales of motion in mixing layers in terms of the
invariants. Soria et al. (1994) plot joint number density of unnormalized invariants
rather than joint probability density function. The joint probability density function
of q and r computed from isotropic decay DNS data (figure 3a) has two prominent
features: (i) significant amount of data lies in the lower-right quadrant concentrated

along the curve q = − 3
√

27r2/4 (Vieillefosse line) and (ii) bulk of data lies almost
uniformly distributed over a roughly elliptical region in the upper-left quadrant.
These features have been observed in DNS of a variety of flows and are fairly
independent of initial conditions (Chen et al. 1990; Soria et al. 1994). The local
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Figure 1. Probability density functions of normalized strain rate eigenvalues (α∗, β∗, γ ∗).
(a) Incompressible DNS, (b) asymptotic REE and (c) zero-dilatation HEE.

topologies corresponding to the distributions in the upper-left and the lower-right
quadrants are stable focus stretching and unstable node saddle–saddle. While the
asymptotic REE does capture the first feature seen in DNS, it completely fails
to recover the second. The asymptotic REE joint probability density function is

completely concentrated on the curve q = − 3
√

27r2/4 (figure 3b). Failure to show any
topology in the upper-left quadrant has been one of the major shortcomings of the
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Figure 2. Probability density functions of the cosines (magnitude) of the angles between
vorticity and strain rate eigenvectors. (a) Incompressible DNS, (b) asymptotic REE and (c) zero-
dilatation HEE.

REE model, and it has attracted considerable research attention (Cantwell 1993;
Chevillard & Meneveau 2006). The HEE model on the other hand convincingly
recovers both the aforementioned features of the q−r distribution seen in DNS
(see figure 3c). Evidently, the HEE results conditioned on zero dilatation capture the
richness of topology observed in incompressible flows much better than the asymptotic
REE results.



A model for compressible velocity gradient dynamics 187

q

–0.10 –0.05 0 0.05 0.10 0.15
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

5

10

15

20

25

30

35(a)

q

–0.10 –0.05 0 0.05 0.10 0.15
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

5

10

15

20

25

30

35(b)

q

r
–0.10 –0.05 0 0.05 0.10 0.15

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

5

10

15

20

25

30

35(c)

Figure 3. Joint probability density function of the second and third invariants (q, r).
(a) Incompressible DNS, (b) asymptotic REE and (c) zero-dilatation HEE.
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Figure 4. Probability density functions of the cosines (magnitude) of the angles between
vorticity and pressure Hessian eigenvectors. Closed symbols: incompressible DNS. Open
symbols: zero-dilatation HEE.

It is reasonable to attribute the observed superiority of HEE over REE to the
inclusion of anisotropic portion of the pressure Hessian tensor. We can further
validate the HEE model by examining how vorticity is oriented with respect to the
eigenvectors of the pressure Hessian tensor. Eulerian analysis of incompressible flows
(Ohkitani & Kishiba 1995) suggests that at points of maximum enstrophy, vorticity
aligns with the eigenvector of the pressure Hessian tensor associated with the smallest
eigenvalue magnitude. Based on this insight we categorize the pressure Hessian
eigenvalues as αp , βp and γp such that |αp| � |βp| � |γp|. This basis of categorization
is different from the one followed by Kalelkar (2006), wherein the pressure Hessian
eigenvalues are categorized by arranging them simply in descending order of value. In
figure 4 we plot the probability density functions of the cosine of the angles between
vorticity and pressure Hessian eigenvectors. Similar to what has been observed by
Ohkitani & Kishiba (1995) in inviscid flows, the DNS also shows a distinct preference
of vorticity to align with the eigenvector of γp – the eigenvalue with the smallest
magnitude. The HEE model accurately recovers not only this trend but the entire
distributions seen in DNS. It should be noted that the REE model has an isotropic
pressure Hessian tensor and hence does not lend itself to this important examination.

Based on the foregoing discussion we summarize that the HEE model in its
incompressible limit accurately recovers the incompressible turbulence behaviour
seen in DNS. Moreover, with a more accurate description of the pressure Hessian
tensor, the HEE model shows significant improvements over the REE model.

4.3. HEE at intermediate dilatations

Having established that the HEE model captures the turbulence behaviour reasonably
well in the extreme Mach number limits, we now examine its validity at intermediate
levels of dilatation. The model results will now be compared against decaying
compressible isotropic turbulence DNS data. Although the model development
invokes the isentropic assumption, we would like to compare it against general
non-isentropic turbulence. Therefore, the decaying turbulence initial conditions are as
given in Lee (2008) rather than Ristorcelli & Blaisdell (1997), which is expressly for
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isentropic turbulence. As is standard procedure in REE literature, we compare DNS
data against HEE results obtained from statistically unbiased randomly generated
velocity gradient initial conditions. As the HEE equations constitute a nonlinear
dynamical system, the asymptotic velocity gradient structure will be independent
of the initial condition. We do expect the levels of dilatational kinetic energy and
dilatational dissipation to depend on initial conditions and initial turbulent Mach
number (Blaisdell, Mansour & Reynolds 1993; Lee 2008). However, the velocity
gradient structure conditioned on local dilatation is expected to be weakly dependent
on initial conditions and turbulent Mach number (Lee 2008). To ensure that initial
conditions do not unduly influence the model-data comparison, the HEE statistics
are gathered only after finite time-elapse corresponding to several turn-over times. We
would like to point out at the very outset that this comparison between non-isentropic
DNS and HEE results from randomly generated initial conditions constitute a very
rigorous test of the proposed model.

As in REE, in HEE velocity gradient tensor is computed following a fluid particle.
In addition, in HEE, pressure Hessian is also computed explicitly from an evolution
equation. Both in REE and HEE the velocity field is not considered and hence
the kinetic energy evolution cannot be computed. Since REE and HEE are inviscid
models, dissipation is also not known. Hence, DNS and HEE comparison is restricted
to velocity gradient alignment angles and invariant maps (Vieillefosse 1982, Ashurst
et al. 1987, Cantwell 1992, 1993).

The HEE computations of the probability density functions of the strain rate
eigenvalues are compared against decaying compressible turbulence DNS data of
Lee (2008). The DNS velocity gradient statistics are computed at the peak of
dissipation in a simulation with initial values of turbulent Mach number and
Taylor-scale Reynolds number of 0.88 and 55.6, respectively. The probability density
functions are conditioned on various values of aii ranging from −1.4 to 1.65.
Figures 5(a), 6(a) and 7(a) show the probability density functions of the normalized
eigenvalues (α∗, β∗ and γ ∗) computed from DNS data. Each of these probability
density functions is a single-peaked distribution with a moderate spread around
the peak. For example, the probability density function of the largest eigenvalue
conditioned on aii = − 1.4 has a peak at α∗ = − 0.15 with a spread in the
range −0.4 <α∗ < 0.1.

The DNS probability density functions of the intermediate eigenvalue (β∗) shift
monotonically from left to right as aii increases. The corresponding shifts for the
largest (α∗) and the smallest (γ ∗) eigenvalues are non-monotonic. The arrows placed
on the corresponding figures indicate the direction of these shifts with increasing
aii . For the largest eigenvalue, the reversal in the direction of shift happens at a
high positive aii , whereas for the smallest eigenvalue the reversal happens at a high
negative aii . All these features observed in DNS are very well recovered by HEE in
figures 5(b), 6(b) and 7(b). Remarkably, the values of dilatation at which the trends
reverse are captured very accurately by HEE.

Next we compare the shapes of the probability density functions. It is clear that
the HEE does not recover exactly the shapes of the probability density functions
seen in DNS. However, there are some ranges of aii over which the agreement is
good. For the largest eigenvalue the HEE distributions become increasingly more
accurate as aii approaches higher positive values. The HEE probability density
functions for the intermediate eigenvalue are fairly close to their DNS counterparts
at moderately-negative and moderately-positive dilatations. The distinct asymmetry
of the β∗ probability density functions seen in DNS at moderate dilatations is well
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Figure 5. Probability density functions of normalized largest strain rate eigenvalue (α∗)
conditioned on various values of aii . (a) Compressible DNS and (b) HEE.

reproduced by HEE. For the smallest eigenvalue the agreement between the DNS
and HEE distributions gets better at highly-negative dilatations.

With figure 8 we take a closer look at the dependence of most probable strain
rate eigenvalues (peaks of the probability density functions included in figures 5–
7) on normalized dilatation. The agreement between the HEE and DNS values
is generally good with an exception at aii = −1. At this dilatation the HEE
computations show that the strain rate tensor is under severe uni-axial compression
with (α∗, β∗, γ ∗) ≈ (0.02, 0.02, −0.98), which is somewhat different from the DNS
behaviour [(α∗, β∗, γ ∗) ≈ (0.12, −0.15, −0.98)]. One of the possible reasons for this
discrepancy could be the role of viscosity. HEE computations reveal that almost all
contracting particles with aii = −1 are associated with very large velocity gradient
magnitudes and hence sizable viscous effects. It is plausible that dissipation and
viscous effects would dominate the dynamics in these regions. In these high dissipation
regions, the isentropic assumption is also questionable.
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Figure 6. Probability density functions of normalized intermediate strain rate eigenvalue
(β∗) conditioned on various values of aii . (a) Compressible DNS and (b) HEE.

5. Conclusions
Under the assumptions of uniform velocity gradients in an inviscid compressible

and isentropic flow field we develop a model – the homogenized Euler equation –
for describing compressible velocity gradient dynamics. The medium is assumed to
be a calorically perfect gas. Coupling between the energy and momentum equation
is invoked through the perfect gas state and energy equations. The pressure Hessian
evolves as dictated by thermodynamic considerations. In contrast to the restricted
Euler equation, the anisotropic pressure Hessian effects are retained intact in this
approach. The model comprises of 15 ordinary differential equations in 15 unknowns.
Computations are performed for an ensemble of random initial velocity gradient
tensors. We study various statistics pertaining to the structure of the velocity gradient
tensor conditioned upon normalized dilatation. HEE results in the incompressible
limit compare very well against DNS results of incompressible decaying isotropic
turbulence. Moreover, in this limit the HEE computations are much improved over the
asymptotic REE results. At various non-zero dilatations the HEE very well captures
many features of the principal strain rate statistics seen in compressible DNS. The
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Figure 7. Probability density functions of normalized smallest strain rate eigenvalue (γ ∗)
conditioned on various values of aii . (a) Compressible DNS and (b) HEE.
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symbols: Compressible DNS. Open symbols: HEE.
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HEE behviour in the high-Mach-number (pressure-released) limit is consistent with
Burgers velocity gradient dynamics. The HEE is put forward as a useful model to
describe velocity gradient dynamics in compressible turbulence.

This work was supported by AFOSR (MURI) Grant No. FA9550-04-1-0425
(Program Manager: Dr John Schmisseur).

REFERENCES

Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and
scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30.

Avellaneda, M., Ryan, R. & Weinan, E. 1995 Pdfs for velocity and velocity gradients in burgers
turbulence. Phys. Fluids 7.

Bikkani, R. & Girimaji, S. S. 2007 Role of pressure in non-linear velocity gradient dynamics in
turbulence. Phys. Rev. E 75.

Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1993 Compressibility effects on the growth
and structure of homogenous turbulent shear flow. J. Fluid Mech. 256, 443–485.

Bouchaud, J.-P. & Mzard, M. 1996 Velocity fluctuations in forced burgers turbulence. Phys. Rev.
E 54.

Cantwell, B. J. 1992 Exact solution of a restricted euler equation for the velocity gradient tensor.
Phys. Fluids A 4.

Cantwell, B. J. 1993 On the behavior of velocity gradient tensor invariants in direct numerical
simulations of turbulence. Phys. Fluids A 5.

Chen, J. H., Chong, M. S., Soria, J., Sondergaard, R., Perry, A. E., Rogers, M., Moser, R. &

Cantwell, B. J. 1990 A study of the topology of dissipating motions in direct numerical
simulations of time-developing compressible and incompressible mixing layers. In Proceedings
of the Center for Turbulence Research Summer Program, CTR-S90.

Chertkov, M., Pumir, A. & Shraiman, B. I. 1999 Lagrangian tetrad dynamics and phenomenology
of turbulence. Phys. Fluids 11.

Chevillard, L. & Meneveau, C. 2006 Lagrangian dynamics and statistical geometric structure of
turbulence. Phys. Rev. Lett. 97.

Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional
flow fields. Phys. Fluids A 2.

Girimaji, S. S. & Pope, S. B. 1990 A diffusion model for velocity gradients in turbulence. Phys.
Fluids A 2.

Girimaji, S. S. & Speziale, C. G. 1995 A modified restricted euler equation for turbulent flows with
mean velocity gradients. Phys. Fluids 7.

Girimaji, S. S. & Zhou, Y. 1995 Spectrum and energy transfer in steady burgers turbulence. Phys.
Lett. A 202.

Jeong, E. & Girimaji, S. S. 2003 Velocity-gradient dynamics in turbulence: effect of viscosity and
forcing. Theor. Comput. Fluid Dyn. 16, 421–432.

Kalelkar, C. 2006 Statistics of pressure fluctuations in decaying isotropic turbulence. Phys. Rev. E
73.

Kerimo, J. & Girimaji, S. S. 2007 Boltzmann – BGK approach to simulating weakly compressible
turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbul. 8, N
46.

Lee, K. 2008 Heat release effects on decaying homogeneous compressible turbulence. PhD thesis,
Texas A & M University.

Li, Y. & Meneveau, C. 2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys.
Lett. 95.

Ohkitani, K. 1993 Eigenvalue problems in 3D Euler flows. Phys. Fluids A 5.

Ohkitani, K. & Kishiba, S. 1995 Non-local nature of vortex stretching in an inviscid fluid. Phys.
Fluids 7.

Passot, T. & Vzquez-Semadeni, E. 1998 Density probability distribution in one-dimensional
polytropic gas dynamics. Phys. Rev. E 58.



194 S. Suman and S. S. Girimaji

Perry, A. E. & Chong, M. S. 1987 A description of eddying motion and flow patterns using critical
point concepts. Ann. Rev. Fluid Mech. 19, 125–155.

Ristorcelli, J. R. & Blaisdell, G. A. 1997 Consistent initial conditions for the DNS of
compressible turbulence. Phys. Fluids 9 (1).

Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the
fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6.

Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid.
J. Phys. (Paris) 43, 837.


